【广东会GDH基因检测】血液系统遗传病的基因矫正治疗国际国内进展
导读:
广东会GDH基因致力于遗传病的基因突变信息解码和基因矫正,总结和归纳了截止到2021年前的血液系统、免疫性遗传病的基因编辑、基因治疗方案。这里给出了文献列表
文献列表:
1. Papapetrou: E.P., Zoumbos N.C., Athanassiadou A. Genetic modification of hematopoietic stem cells with nonviral systems: Past progress and future prospects. Gene Ther. 2005;12:S118–S130. doi: 10.1038/sj.gt.3302626. [PubMed] [CrossRef] [Google Scholar]
2. Gatti R., Meuwissen H., Allen H., Hong R., Good R. Immunological Reconstitution of Sex-Linked Lymphopenic Immunological Deficiency. Lancet. 1968;292:1366–1369. doi: 10.1016/S0140-6736(68)92673-1. [PubMed] [CrossRef] [Google Scholar]
3. Steward C.G., Jarisch A. Haemopoietic stem cell transplantation for genetic disorders. Arch. Dis. Child. 2005;90:1259–1263. doi: 10.1136/adc.2005.074278. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Michlitsch J., Walters M. Recent Advances in Bone Marrow Transplantation in Hemoglobinopathies. Curr. Mol. Med. 2008;8:675–689. doi: 10.2174/156652408786241393. [PubMed] [CrossRef] [Google Scholar]
5. Duarte R.F., Labopin M., Bader P., Basak G.W., Bonini C., Chabannon C., Corbacioglu S., Dreger P., Dufour C. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2019. Bone Marrow Transplant. 2019;54:1525–1552. doi: 10.1038/s41409-019-0516-2. [PubMed] [CrossRef] [Google Scholar]
6. Mogul M.J. Unrelated cord blood transplantation vs matched unrelated donor bone marrow transplantation: The risks and benefits of each choice. Bone Marrow Transplant. 2000;25:S58–S60. doi: 10.1038/sj.bmt.1702372. [PubMed] [CrossRef] [Google Scholar]
7. Touzot F., Moshous D., Creidy R., Neven B., Frange P., Cros G., Caccavelli L., Blondeau J., Magnani A., Luby J.-M., et al. Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1. Blood. 2015;125:3563–3569. doi: 10.1182/blood-2014-12-616003. [PubMed] [CrossRef] [Google Scholar]
8. Daniel-Moreno A., Lamsfus-Calle A., Raju J., Antony J.S., Handgretinger R., Mezger M. CRISPR/Cas9-modified hematopoietic stem cells—present and future perspectives for stem cell transplantation. Bone Marrow Transplant. 2019;54:1940–1950. doi: 10.1038/s41409-019-0510-8. [PubMed] [CrossRef] [Google Scholar]
9. Dunbar C.E., High K., Joung J.K., Kohn D.B., Ozawa K., Sadelain M. Gene therapy comes of age. Science. 2018;359:eaan4672. doi: 10.1126/science.aan4672. [PubMed] [CrossRef] [Google Scholar]
10. Cavazzana-Calvo M., Payen E., Negre O., Wang G., Hehir K., Fusil F., Down J., Denaro M., Brady T., Westerman K., et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467:318–322. doi: 10.1038/nature09328. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
11. Thompson A.A., Walters M.C., Kwiatkowski J., Rasko J.E., Ribeil J.-A., Hongeng S., Magrin E., Schiller G.J., Payen E., Semeraro M., et al. Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. N. Engl. J. Med. 2018;378:1479–1493. doi: 10.1056/NEJMoa1705342. [PubMed] [CrossRef] [Google Scholar]
12. Ribeil J.-A., Hacein-Bey-Abina S., Payen E., Magnani A., Semeraro M., Magrin E., Caccavelli L., Neven B., Bourget P., El Nemer W., et al. Gene Therapy in a Patient with Sickle Cell Disease. N. Engl. J. Med. 2017;376:848–855. doi: 10.1056/NEJMoa1609677. [PubMed] [CrossRef] [Google Scholar]
13. Marktel S., Scaramuzza S., Cicalese M.P., Giglio F., Galimberti S., Lidonnici M.R., Calbi V., Assanelli A., Bernardo M.E., Rossi C., et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nat. Med. 2019;25:234–241. doi: 10.1038/s41591-018-0301-6. [PubMed] [CrossRef] [Google Scholar]
14. Río P., Navarro S., Wang W., Sánchez-Domínguez R., Pujol R.M., Segovia J.C., Bogliolo M., Merino E., Wu N., Salgado R., et al. Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. Nat. Med. 2019;25:1396–1401. doi: 10.1038/s41591-019-0550-z. [PubMed] [CrossRef] [Google Scholar]
15. Abina S.H.-B., Gaspar H.B., Blondeau J., Caccavelli L., Charrier S., Buckland K., Picard C., Six E., Himoudi N., Gilmour K., et al. Outcomes Following Gene Therapy in Patients with Severe Wiskott-Aldrich Syndrome. JAMA. 2015;313:1550–1563. doi: 10.1001/jama.2015.3253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Aiuti A., Biasco L., Scaramuzza S., Ferrua F., Cicalese M.P., Baricordi C., Dionisio F., Calabria A., Giannelli S., Castiello M.C., et al. Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome. Science. 2013;341:1233151. doi: 10.1126/science.1233151. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
17. De Ravin S.S., Wu X., Moir S., Anaya-O’Brien S., Kwatemaa N., Littel P., Theobald N., Choi U., Su L., Marquesen M., et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci. Transl. Med. 2016;8:335ra57. doi: 10.1126/scitranslmed.aad8856. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
18. Eichler F., Duncan C., Musolino P.L., Orchard P.J., De Oliveira S., Thrasher A., Armant M., Dansereau C., Lund T.C., Miller W.P., et al. Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy. N. Engl. J. Med. 2017;377:1630–1638. doi: 10.1056/NEJMoa1700554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19. Cartier N., Hacein-Bey-Abina S., Bartholomae C.C., Veres G., Schmidt M., Kutschera I., Vidaud M., Abel U., Dal-Cortivo L., Caccavelli L., et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326:818–823. doi: 10.1126/science.1171242. [PubMed] [CrossRef] [Google Scholar]
20. Sessa M., Lorioli L., Fumagalli F., Acquati S., Redaelli D., Baldoli C., Canale S., Lopez I.D., Morena F., Calabria A., et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: An ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet. 2016;388:476–487. doi: 10.1016/S0140-6736(16)30374-9. [PubMed] [CrossRef] [Google Scholar]
21. Stein S., Ott M.G., Schultze-Strasser S., Jauch A., Burwinkel B., Kinner A., Schmidt M., Krämer A., Schwäble J., Glimm H., et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat. Med. 2010;16:198–204. doi: 10.1038/nm.2088. [PubMed] [CrossRef] [Google Scholar]
22. Imren S., Fabry M.E., Westerman K., Pawliuk R., Tang P., Rosten P.M., Nagel R.L., Leboulch P., Eaves C.J., Humphries R.K. High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J. Clin. Investig. 2004;114:953–962. doi: 10.1172/JCI200421838. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
23. Hargrove P.W., Kepes S., Hanawa H., Obenauer J.C., Pei D., Cheng C., Gray J.T., Neale G., Persons D.A. Globin lentiviral vector insertions can perturb the expression of endogenous genes in beta-thalassemic hematopoietic cells. Mol. Ther. 2008;16:525–533. doi: 10.1038/sj.mt.6300394. [PubMed] [CrossRef] [Google Scholar]
24. Hacein-Bey-Abina S., Von Kalle C., Schmidt M., Le Deist F., Wulffraat N., McIntyre E., Radford I., Villevals J.-L., Fraser C.C., Cavazzana-Calvo M., et al. A Serious Adverse Event after Successful Gene Therapy for X-Linked Severe Combined Immunodeficiency. N. Engl. J. Med. 2003;348:255–256. doi: 10.1056/NEJM200301163480314. [PubMed] [CrossRef] [Google Scholar]
25. Howe S.J., Mansour M.R., Schwarzwaelder K., Bartholomae C., Hubank M., Kempski H., Brugman M.H., Pike-Overzet K., Chatters S.J., De Ridder D., et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Investig. 2008;118:3143–3150. doi: 10.1172/JCI35798. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
26. Luis A. The Old and the New: Prospects for Non-Integrating Lentiviral Vector Technology. Viruses. 2020;12:1103. doi: 10.3390/v12101103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
27. Hardee C.L., Arévalo-Soliz L.M., Hornstein B.D., Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes. 2017;8:65. doi: 10.3390/genes8020065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
28. Shrivastav M., De Haro L.P., Nickoloff J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res. 2008;18:134–147. doi: 10.1038/cr.2007.111. [PubMed] [CrossRef] [Google Scholar]
29. Patsali P., Kleanthous M., Lederer C.W. Disruptive Technology: CRISPR/Cas-Based Tools and Approaches. Mol. Diagn. Ther. 2019;23:187–200. doi: 10.1007/s40291-019-00391-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
30. Papasavva P., Kleanthous M., Lederer C.W. Rare Opportunities: CRISPR/Cas-Based Therapy Development for Rare Genetic Diseases. Mol. Diagn. Ther. 2019;23:201–222. doi: 10.1007/s40291-019-00392-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
31. Frangoul H., Altshuler D., Cappellini M.D., Chen Y.-S., Domm J., Eustace B.K., Foell J., De La Fuente J., Grupp S., Handgretinger R., et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N. Engl. J. Med. 2021;384:252–260. doi: 10.1056/NEJMoa2031054. [PubMed] [CrossRef] [Google Scholar]
32. Carroll D. Genome Engineering with Targetable Nucleases. Annu. Rev. Biochem. 2014;83:409–439. doi: 10.1146/annurev-biochem-060713-035418. [PubMed] [CrossRef] [Google Scholar]
33. Silva G., Poirot L., Galetto R., Smith J., Montoya G., Duchateau P., Paques F. Meganucleases and Other Tools for Targeted Genome Engineering: Perspectives and Challenges for Gene Therapy. Curr. Gene Ther. 2011;11:11–27. doi: 10.2174/156652311794520111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
34. Urnov F., Rebar E.J., Holmes M.C., Zhang H.S., Gregory P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010;11:636–646. doi: 10.1038/nrg2842. [PubMed] [CrossRef] [Google Scholar]
35. Scharenberg A., Duchateau P., Smith J. Genome Engineering with TAL-Effector Nucleases and Alternative Modular Nuclease Technologies. Curr. Gene Ther. 2013;13:291–303. doi: 10.2174/15665232113139990026. [PubMed] [CrossRef] [Google Scholar]
36. Wiedenheft B., Sternberg S.H., Doudna J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482:331–338. doi: 10.1038/nature10886. [PubMed] [CrossRef] [Google Scholar]
37. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
38. Walton R.T., Christie K.A., Whittaker M.N., Kleinstiver B.P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 2020;368:290–296. doi: 10.1126/science.aba8853. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
39. Huang T.P., Zhao K.T., Miller S.M., Gaudelli N.M., Oakes B.L., Fellmann C., Savage D.F., Liu D.R. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 2019;37:626–631. doi: 10.1038/s41587-019-0134-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
40. Naeem M., Majeed S., Hoque M.Z., Ahmad I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells. 2020;9:1608. doi: 10.3390/cells9071608. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41. Schiroli G., Conti A., Ferrari S., DELLA Volpe L., Jacob A., Albano L., Beretta S., Calabria A., Vavassori V., Gasparini P., et al. Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell. 2019;24:551–565.e8. doi: 10.1016/j.stem.2019.02.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Ferrari S., Jacob A., Beretta S., Unali G., Albano L., Vavassori V., Cittaro D., Lazarevic D., Brombin C., Cugnata F., et al. Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking. Nat. Biotechnol. 2020;38:1298–1308. doi: 10.1038/s41587-020-0551-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
43. Genovese P., Schiroli G., Escobar G., Di Tomaso T., Firrito C., Calabria A., Moi D., Mazzieri R., Bonini C., Holmes M.C., et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nat. Cell Biol. 2014;510:235–240. doi: 10.1038/nature13420. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
44. Humbert O., Radtke S., Samuelson C., Carrillo R.R., Perez A.M., Reddy S.S., Lux C., Pattabhi S., Schefter L.E., Negre O., et al. Therapeutically relevant engraftment of a CRISPR-Cas9–edited HSC-enriched population with HbF reactivation in nonhuman primates. Sci. Transl. Med. 2019;11:eaaw3768. doi: 10.1126/scitranslmed.aaw3768. [PubMed] [CrossRef] [Google Scholar]
45. Wang J., Exline C.M., Declercq J.J., Llewellyn G.N., Hayward S.B., Li P.W.-L., Shivak D.A., Surosky R.T., Gregory P.D., Holmes M.C., et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 2015;33:1256–1263. doi: 10.1038/nbt.3408. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46. Haapaniemi E., Botla S., Persson J., Schmierer B., Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 2018;24:927–930. doi: 10.1038/s41591-018-0049-z. [PubMed] [CrossRef] [Google Scholar]
47. Ihry R.J., Worringer K.A., Salick M.R., Frias E., Ho D., Theriault K., Kommineni S., Chen J., Sondey M., Ye C., et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med. 2018;24:939–946. doi: 10.1038/s41591-018-0050-6. [PubMed] [CrossRef] [Google Scholar]
48. Kosicki M., Tomberg K., Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018;36:765–771. doi: 10.1038/nbt.4192. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49. Leibowitz M.L., Papathanasiou S., Doerfler P.A., Blaine L.J., Sun L., Yao Y., Zhang C.-Z., Weiss M.J., Pellman D. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 2021:1–11. doi: 10.1038/s41588-021-00838-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
50. Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–424. doi: 10.1038/nature17946. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
51. Huang T.P., Newby G.A., Liu D.R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 2021;16:1089–1128. doi: 10.1038/s41596-020-00450-9. [PubMed] [CrossRef] [Google Scholar]
52. Anzalone A.V., Randolph P.B., Davis J.R., Sousa A.A., Koblan L.W., Levy J.M., Chen P.J., Wilson C., Newby G.A., Raguram A., et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–157. doi: 10.1038/s41586-019-1711-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
53. Amabile A., Migliara A., Capasso P., Biffi M., Cittaro D., Naldini L., Lombardo A.L. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing. Cell. 2016;167:219–232.e14. doi: 10.1016/j.cell.2016.09.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
54. Nuñez J.K., Chen J., Pommier G.C., Cogan J.Z., Replogle J.M., Adriaens C., Ramadoss G.N., Shi Q., Hung K.L., Samelson A.J., et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184:2503–2519.e17. doi: 10.1016/j.cell.2021.03.025. [PubMed] [CrossRef] [Google Scholar]
55. Czechowicz A., Palchaudhuri R., Scheck A., Hu Y., Hoggatt J., Saez B., Pang W.W., Mansour M.K., Tate T.A., Chan Y.Y., et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 2019;10:1–12. doi: 10.1038/s41467-018-08201-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
56. Wang H., Georgakopoulou A., Psatha N., Li C., Capsali C., Samal H.B., Anagnostopoulos A., Ehrhardt A., Izsvák Z., Papayannopoulou T., et al. In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia. J. Clin. Investig. 2018;129:598–615. doi: 10.1172/JCI122836. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
57. Wang H., Georgakopoulou A., Li C., Liu Z., Gil S., Bashyam A., Yannaki E., Anagnostopoulos A., Pande A., Izsvák Z., et al. Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements. JCI Insight. 2020;5:e139538. doi: 10.1172/jci.insight.139538. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
58. Shangaris P., Loukogeorgakis S.P., Subramaniam S., Flouri C., Jackson L.H., Wang W., Blundell M.P., Liu S., Eaton S., Bakhamis N., et al. In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Sci. Rep. 2019;9:1–17. [PMC free article] [PubMed] [Google Scholar]
59. Li C., Wang H., Georgakopoulou A., Gil S., Yannaki E., Lieber A. In Vivo HSC Gene Therapy Using a Bi-modular HDAd5/35++ Vector Cures Sickle Cell Disease in a Mouse Model. Mol. Ther. 2021;29:822–837. doi: 10.1016/j.ymthe.2020.09.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
60. Cannon P., Asokan A., Czechowicz A., Hammond P., Kohn D.B., Lieber A., Malik P., Marks P., Porteus M., Verhoeyen E., et al. Safe and Effective In Vivo Targeting and Gene Editing in Hematopoietic Stem Cells: Strategies for Accelerating Development. Hum. Gene Ther. 2021;32:31–42. doi: 10.1089/hum.2020.263. [PubMed] [CrossRef] [Google Scholar]
61. Riley R.S., Kashyap M.V., Billingsley M.M., White B., Alameh M.-G., Bose S.K., Zoltick P.W., Li H., Zhang R., Cheng A.Y., et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 2021;7:eaba1028. doi: 10.1126/sciadv.aba1028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62. Li C., Georgakopoulou A., Mishra A., Gil S., Hawkins R.D., Yannaki E., Lieber A. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Adv. 2021;5:1122–1135. doi: 10.1182/bloodadvances.2020003702. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
63. Brave M., Farrell A., Lin S.C., Ocheltree T., Miksinski S.P., Lee S.L., Saber H., Fourie J., Tornoe C., Booth B., et al. FDA review summary: Mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology. 2010;78:282–288. doi: 10.1159/000315736. [PubMed] [CrossRef] [Google Scholar]
64. Yannaki E., Papayannopoulou T., Jonlin E., Zervou F., Karponi G., Xagorari A., Becker P., Psatha N., Batsis I., Kaloyannidis P., et al. Hematopoietic stem cell mobilization for gene therapy of adult patients with severe beta-thalassemia: Results of clinical trials using G-CSF or plerixafor in splenectomized and nonsplenectomized subjects. Mol. Ther. 2012;20:230–238. doi: 10.1038/mt.2011.195. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
65. Karponi G., Psatha N., Lederer C.W., Adair J., Zervou F., Zogas N., Kleanthous M., Tsatalas C., Anagnostopoulos A., Sadelain M., et al. Plerixafor+G-CSF–mobilized CD34+ cells represent an optimal graft source for thalassemia gene therapy. Blood. 2015;126:616–619. doi: 10.1182/blood-2015-03-629618. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
66. Tisdale J.F., Pierciey J.F.J., Kamble R., Kanter J., Krishnamurti L., Kwiatkowski J.L., Thompson M.A.A., Shestopalov I., Bonner M., Joseney-Antoine M., et al. Successful Plerixafor-Mediated Mobilization, Apheresis, and Lentiviral Vector Transduction of Hematopoietic Stem Cells in Patients with Severe Sickle Cell Disease. Blood. 2017;130:990. doi: 10.1182/blood.V130.Suppl_1.990.990. [CrossRef] [Google Scholar]
67. Hsu Y.-M.S., Cushing M.M. Autologous Stem Cell Mobilization and Collection. Hematol. Clin. N. Am. 2016;30:573–589. doi: 10.1016/j.hoc.2016.01.004. [PubMed] [CrossRef] [Google Scholar]
68. Yamanaka S. The Winding Road to Pluripotency (Nobel Lecture) Angew. Chem. Int. Ed. 2013;52:13900–13909. doi: 10.1002/anie.201306721. [PubMed] [CrossRef] [Google Scholar]
69. Demirci S., Leonard A., Tisdale J.F. Hematopoietic stem cells from pluripotent stem cells: Clinical potential, challenges, and future perspectives. Stem Cells Transl. Med. 2020;9:1549–1557. doi: 10.1002/sctm.20-0247. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
70. Michallet M., Philip T., Philip I., Godinot H., Sebban C., Salles G., Thiebaut A., Biron P., Lopez F., Mazars P., et al. Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myelomaImpact of HSC dose on engraftment, safety, and immune reconstitution. Exp. Hematol. 2000;28:858–870. doi: 10.1016/S0301-472X(00)00169-7. [PubMed] [CrossRef] [Google Scholar]
71. Negrin R.S., Atkinson K., Leemhuis T., Hanania E., Juttner C., Tierney K., Hu W.W., Johnston L.J., Shizuru J.A., Stockerl-Goldstein K.E., et al. Transplantation of Highly Purified CD34+Thy-l+ Hematopoietic Stem Cells in Patients with Metastatic Breast Cancer. Biol. Blood Marrow Transplant. 2000;6:262–271. doi: 10.1016/S1083-8791(00)70008-5. [PubMed] [CrossRef] [Google Scholar]
72. Notta F., Doulatov S., Laurenti E., Poeppl A., Jurisica I., Dick J. Isolation of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment. Science. 2011;333:218–221. doi: 10.1126/science.1201219. [PubMed] [CrossRef] [Google Scholar]
73. Biasco L., Pellin D., Scala S., Dionisio F., Basso-Ricci L., Leonardelli L., Scaramuzza S., Baricordi C., Ferrua F., Cicalese M.P., et al. In Vivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases. Cell Stem Cell. 2016;19:107–119. doi: 10.1016/j.stem.2016.04.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
74. Baldwin K., Urbinati F., Romero Z., Campo-Fernandez B., Kaufman M.L., Cooper A.R., Masiuk K., Hollis R.P., Kohn D.B. Enrichment of Human Hematopoietic Stem/Progenitor Cells Facilitates Transduction for Stem Cell Gene Therapy. Stem Cells. 2015;33:1532–1542. doi: 10.1002/stem.1957. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
75. Masiuk K.E., Brown D., Laborada J., Hollis R.P., Urbinati F., Kohn D.B. Improving Gene Therapy Efficiency through the Enrichment of Human Hematopoietic Stem Cells. Mol. Ther. 2017;25:2163–2175. doi: 10.1016/j.ymthe.2017.05.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
76. Akker E.V.D., Satchwell T.J., Pellegrin S., Daniels G., Toye A.M. The majority of the in vitro erythroid expansion potential resides in CD34- cells, outweighing the contribution of CD34+ cells and significantly increasing the erythroblast yield from peripheral blood samples. Haematologica. 2010;95:1594–1598. doi: 10.3324/haematol.2009.019828. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
77. Zonari E., Desantis G., Petrillo C., Boccalatte F., Lidonnici M.R., Kajaste-Rudnitski A., Aiuti A., Ferrari G., Naldini L., Gentner B. Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy. Stem Cell Rep. 2017;8:977–990. doi: 10.1016/j.stemcr.2017.02.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
78. Radtke S., Pande D., Cui M., Perez A.M., Chan Y.-Y., Enstrom M., Schmuck S., Berger A., Eunson T., Adair J.E., et al. Purification of Human CD34+CD90+ HSCs Reduces Target Cell Population and Improves Lentiviral Transduction for Gene Therapy. Mol. Ther.-Methods Clin. Dev. 2020;18:679–691. doi: 10.1016/j.omtm.2020.07.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
79. Pietras E.M., Warr M.R., Passegué E. Cell cycle regulation in hematopoietic stem cells. J. Cell Biol. 2011;195:709–720. doi: 10.1083/jcb.201102131. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
80. Mazurier F., Gan O.I., McKenzie J.L., Doedens M., Dick J.E. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood. 2004;103:545–552. doi: 10.1182/blood-2003-05-1558. [PubMed] [CrossRef] [Google Scholar]
81. De Witt M.A., Magis W., Bray N.L., Wang T., Berman J.R., Urbinati F., Heo S.-J., Mitros T., Muñoz D.P., Boffelli D., et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 2016;8:360ra134. doi: 10.1126/scitranslmed.aaf9336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
82. Hoban M.D., Cost G.J., Mendel M.C., Romero Z., Kaufman M.L., Joglekar A.V., Ho M., Lumaquin D., Gray D., Lill G.R., et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 2015;125:2597–2604. doi: 10.1182/blood-2014-12-615948. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
83. Ferrari G., Thrasher A.J., Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 2021;22:216–234. doi: 10.1038/s41576-020-00298-5. [PubMed] [CrossRef] [Google Scholar]
84. Klaver-Flores S., Zittersteijn H.A., Canté-Barrett K., Lankester A., Hoeben R.C., Gonçalves M.A.F.V., Pike-Overzet K., Staal F.J.T. Genomic Engineering in Human Hematopoietic Stem Cells: Hype or Hope? Front. Genome Ed. 2021;2:1–9. doi: 10.3389/fgeed.2020.615619. [CrossRef] [Google Scholar]
85. De Ravin S.S., Brault J., Meis R.J., Liu S., Li L., Pavel-Dinu M., Lazzarotto C.R., Liu T.Q., Koontz S.M., Choi U., et al. Enhanced homology-directed repair for highly efficient gene editing in hematopoietic stem/progenitor cells. Blood. 2021;137:2598–2608. doi: 10.1182/blood.2020008503. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
86. Maruyama T., Dougan S.K., Truttmann M.C., Bilate A.M., Ingram J.R., Ploegh H.L. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 2015;33:538–542. doi: 10.1038/nbt.3190. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
87. Lomova A., Clark D.N., Campo-Fernandez B., Flores-Bjurström C., Kaufman M.L., Fitz-Gibbon S., Wang X., Miyahira E.Y., Brown D., DeWitt M.A., et al. Improving Gene Editing Outcomes in Human Hematopoietic Stem and Progenitor Cells by Temporal Control of DNA Repair. Stem Cells. 2019;37:284–294. doi: 10.1002/stem.2935. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
88. Gutschner T., Haemmerle M., Genovese G., Draetta G.F., Chin L. Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Cell Rep. 2016;14:1555–1566. doi: 10.1016/j.celrep.2016.01.019. [PubMed] [CrossRef] [Google Scholar]
89. Tran N.-T., Bashir S., Li X., Rossius J., Chu V.T., Rajewsky K., Kühn R. Enhancement of Precise Gene Editing by the Association of Cas9 with Homologous Recombination Factors. Front. Genet. 2019;10:326. doi: 10.3389/fgene.2019.00365. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
90. Ngom M., Imren S., Maetzig T., Adair J., Knapp D.J., Chagraoui J., Fares I., Bordeleau M.-E., Sauvageau G., Leboulch P., et al. UM171 Enhances Lentiviral Gene Transfer and Recovery of Primitive Human Hematopoietic Cells. Mol. Ther.-Methods Clin. Dev. 2018;10:156–164. doi: 10.1016/j.omtm.2018.06.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
91. Psatha N., Georgolopoulos G., Phelps S., Papayannopoulou T. Brief Report: A Differential Transcriptomic Profile of Ex Vivo Expanded Adult Human Hematopoietic Stem Cells Empowers Them for Engraftment Better than Their Surface Phenotype. Stem Cells Transl. Med. 2017;6:1852–1858. doi: 10.1002/sctm.17-0048. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
92. Boitano A.E., Wang J., Romeo R., Bouchez L.C., Parker A.E., Sutton S.E., Walker J.R., Flaveny C.A., Perdew G.H., Denison M.S., et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329:1345–1348. doi: 10.1126/science.1191536. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
93. Bloh K., Rivera-Torres N. A Consensus Model of Homology-Directed Repair Initiated by CRISPR/Cas Activity. Int. J. Mol. Sci. 2021;22:3834. doi: 10.3390/ijms22083834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
94. Gallagher D.N., Pham N., Tsai A.M., Janto A.N., Choi J., Ira G., Haber J.E. A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genet. 2020;16:e1008689. doi: 10.1371/journal.pgen.1008689. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
95. Jeong Y.-S., Kim E.J., Shim C.-K., Hou J.H., Kim J.M., Choi H.-G., Kim W.-K., Oh Y.-K. Modulation of biodistribution and expression of plasmid DNA following mesenchymal progenitor cell-based delivery. J. Drug Target. 2008;16:405–414. doi: 10.1080/10611860802088713. [PubMed] [CrossRef] [Google Scholar]
96. Wang Z., Troilo P.J., Wang X., Griffiths T.G., Pacchione S.J., Barnum A.B., Harper L.B., Pauley C.J., Niu Z., Denisova L., et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004;11:711–721. doi: 10.1038/sj.gt.3302213. [PubMed] [CrossRef] [Google Scholar]
97. De Ravin S.S., Reik A., Liu P.-Q., Li L., Wu X., Su L., Raley C., Theobald N., Choi U., Song A.H., et al. Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat. Biotechnol. 2016;34:424–429. doi: 10.1038/nbt.3513. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
98. Schiroli G., Ferrari S., Conway A., Jacob A., Capo V., Albano L., Plati T., Castiello M.C., Sanvito F., Gennery A.R., et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci. Transl. Med. 2017;9:eaan0820. doi: 10.1126/scitranslmed.aan0820. [PubMed] [CrossRef] [Google Scholar]
99. Kuo C.Y., Long J.D., Campo-Fernandez B., de Oliveira S., Cooper A.R., Romero Z., Hoban M.D., Joglekar A.V., Lill G.R., Kaufman M.L., et al. Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome. Cell Rep. 2018;23:2606–2616. doi: 10.1016/j.celrep.2018.04.103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
100. Tu Z., Yang W., Yan S., Yin A., Gao J., Liu X., Zheng Y., Zheng J., Li Z., Yang S., et al. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci. Rep. 2017;7:srep42081. doi: 10.1038/srep42081. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
101. Gangopadhyay S.A., Cox K.J., Manna D., Lim D., Maji B., Zhou Q., Choudhary A. Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry. 2019;58:234–244. doi: 10.1021/acs.biochem.8b01202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
102. Wu Y., Yang L., Chang T., Kandeel F., Yee J.-K. A Small Molecule-Controlled Cas9 Repressible System. Mol. Ther.-Nucleic Acids. 2020;19:922–932. doi: 10.1016/j.omtn.2019.12.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
103. Kwon H., Kim M., Seo Y., Moon Y.S., Lee H.J., Lee K., Lee H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biochemistry. 2018;156:172–193. doi: 10.1016/j.biomaterials.2017.11.034. [PubMed] [CrossRef] [Google Scholar]
104. Sahin U., Karikó K., Türeci Ö. MRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 2014;13:759–780. doi: 10.1038/nrd4278. [PubMed] [CrossRef] [Google Scholar]
105. Wesselhoeft R.A., Kowalski P., Anderson D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-018-05096-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
106. Dever D.P., Bak R., Reinisch A., Camarena J., Washington G., Nicolas C.E., Pavel-Dinu M., Saxena N., Wilkens A.B., Mantri S., et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nat. Cell Biol. 2016;539:384–389. doi: 10.1038/nature20134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
107. Liang X., Potter J., Kumar S., Zou Y., Quintanilla R., Sridharan M., Carte J., Chen W., Roark N., Ranganathan S., et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 2015;208:44–53. doi: 10.1016/j.jbiotec.2015.04.024. [PubMed] [CrossRef] [Google Scholar]
108. Kim S., Kim D., Cho S.W., Kim J., Kim J.-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24:1012–1019. doi: 10.1101/gr.171322.113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
109. Simhadri V.L., McGill J., McMahon S., Wang J., Jiang H., Sauna Z.E. Prevalsence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population. Mol. Ther.-Methods Clin. Dev. 2018;10:105–112. doi: 10.1016/j.omtm.2018.06.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
110. Shahbazi R., Sghia-Hughes G., Reid J.L., Kubek S., Haworth K.G., Humbert O., Kiem H.-P., Adair J.E. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. Nat. Mater. 2019;18:1124–1132. doi: 10.1038/s41563-019-0385-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
111. Gutierrez-Guerrero A., Cosset F.-L., Verhoeyen E. Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses. 2020;12:1016. doi: 10.3390/v12091016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
112. Bak R.O., Porteus M.H. CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors. Cell Rep. 2017;20:750–756. doi: 10.1016/j.celrep.2017.06.064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
113. Bak R.O., Dever D.P., Porteus M.H. CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat. Protoc. 2018;13:358–376. doi: 10.1038/nprot.2017.143. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
114. Cousin C., Oberkampf M., Felix T., Rosenbaum P., Weil R., Fabrega S., Morante V., Negri D., Cara A., Dadaglio G., et al. Persistence of Integrase-Deficient Lentiviral Vectors Correlates with the Induction of STING-Independent CD8+ T Cell Responses. Cell Rep. 2019;26:1242–1257.e7. doi: 10.1016/j.celrep.2019.01.025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
115. Berns K.I., Muzyczka N. AAV: An Overview of Unanswered Questions. Hum. Gene Ther. 2017;28:308–313. doi: 10.1089/hum.2017.048. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
116. Frock R.L., Hu J., Meyers R., Ho Y.-J., Kii E., Alt F.W. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 2015;33:179–186. doi: 10.1038/nbt.3101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
117. Mussolino C., Alzubi J., Fine E.J., Morbitzer R., Cradick T., Lahaye T., Bao G., Cathomen T. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014;42:6762–6773. doi: 10.1093/nar/gku305. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
118. Cho S.W., Kim S., Kim Y., Kweon J., Kim H.S., Bae S., Kim J.-S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132–141. doi: 10.1101/gr.162339.113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
119. Gabriel R., Lombardo A.L., Arens A., Miller J.C., Genovese P., Kaeppel C., Nowrouzi A., Bartholomae C.C., Wang J., Friedman G., et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 2011;29:816–823. doi: 10.1038/nbt.1948. [PubMed] [CrossRef] [Google Scholar]
120. Kim D., Luk K., Wolfe S.A., Kim J.-S. evalsuating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annu. Rev. Biochem. 2019;88:191–220. doi: 10.1146/annurev-biochem-013118-111730. [PubMed] [CrossRef] [Google Scholar]
121. Cheng Y., Tsai S.Q. Illuminating the genome-wide activity of genome editors for safe and effective therapeutics. Genome Biol. 2018;19:1–7. doi: 10.1186/s13059-018-1610-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
122. Turchiano G., Andrieux G., Klermund J., Blattner G., Pennucci V., El Gaz M., Monaco G., Poddar S., Mussolino C., Cornu T.I., et al. Quantitative evalsuation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell. 2021;28:1136–1147. doi: 10.1016/j.stem.2021.02.002. [PubMed] [CrossRef] [Google Scholar]
123. Han H.A., Pang J.K.S., Soh B.-S. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J. Mol. Med. 2020;98:615–632. doi: 10.1007/s00109-020-01893-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
124. Hu Z., Wang Y., Liu Q., Qiu Y., Zhong Z., Li K., Li W., Deng Z., Sun Y. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. mBio. 2021;12:1–11. doi: 10.1128/mBio.00342-21. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
125. Zou J., Mali P., Huang X., Dowey S.N., Cheng L. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011;118:4599–4608. doi: 10.1182/blood-2011-02-335554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
126. Sebastiano V., Maeder M.L., Angstman J.F., Haddad B., Khayter C., Yeo D.T., Goodwin M.J., Hawkins J.S., Ramirez C.L., Batista L., et al. In Situ Genetic Correction of the Sickle Cell Anemia Mutation in Human Induced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases. Stem Cells. 2011;29:1717–1726. doi: 10.1002/stem.718. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
127. Ma N., Liao B., Zhang H., Wang L., Shan Y., Xue Y., Huang K., Chen S., Zhou X., Chen Y., et al. Transcription Activator-like Effector Nuclease (TALEN)-mediated Gene Correction in Integration-free β-Thalassemia Induced Pluripotent Stem Cells*. J. Biol. Chem. 2013;288:34671–34679. doi: 10.1074/jbc.M113.496174. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
128. Xie F., Ye L., Chang J.C., Beyer A.I., Wang J., Muench M.O., Kan Y.W. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526–1533. doi: 10.1101/gr.173427.114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
129. Song B., Fan Y., He W., Zhu D., Niu X., Wang D., Ou Z., Luo M., Sun X. Improved Hematopoietic Differentiation Efficiency of Gene-Corrected Beta-Thalassemia Induced Pluripotent Stem Cells by CRISPR/Cas9 System. Stem Cells Dev. 2015;24:1053–1065. doi: 10.1089/scd.2014.0347. [PubMed] [CrossRef] [Google Scholar]
130. Xu P., Tong Y., Liu X.-Z., Wang T.-T., Cheng L., Wang B.-Y., Lv X., Huang Y., Liu D.-P. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C > T) mutation in β-thalassemia-derived iPSCs. Sci. Rep. 2015;5:srep12065. doi: 10.1038/srep12065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
131. Huang X., Wang Y., Yan W., Smith C., Ye Z., Wang J., Gao Y., Mendelsohn L., Cheng L. Production of Gene-Corrected Adult Beta Globin Protein in Human Erythrocytes Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation. Stem Cells. 2015;33:1470–1479. doi: 10.1002/stem.1969. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
132. Niu X., He W., Song B., Ou Z., Fan D., Chen Y., Fan Y., Sun X. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells. J. Biol. Chem. 2016;291:16576–16585. doi: 10.1074/jbc.M116.719237. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
133. Yang Y., Zhang X., Yi L., Hou Z., Chen J., Kou X., Zhao Y., Wang H., Sun X.-F., Jiang C., et al. Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9. Stem Cells Transl. Med. 2016;5:8–19. doi: 10.5966/sctm.2015-0157. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
134. Hoban M.D., Lumaquin D., Kuo C.Y., Romero Z., Long J., Ho M., Young C.S., Mojadidi M., Fitz-Gibbon S., Cooper A.R., et al. CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells. Mol. Ther. 2016;24:1561–1569. doi: 10.1038/mt.2016.148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
135. Ou Z., Niu X., He W., Chen Y., Song B., Xian Y., Fan D., Tang D., Sun X. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice. Sci. Rep. 2016;6:srep32463. doi: 10.1038/srep32463. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
136. Tang L., Zeng Y., Du H., Gong M., Peng J., Zhang B., Lei M., Zhao F., Wang W., Li X., et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol. Genet. Genom. 2017;292:525–533. doi: 10.1007/s00438-017-1299-z. [PubMed] [CrossRef] [Google Scholar]
137. Wen J., Tao W., Hao S., Zu Y. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. J. Hematol. Oncol. 2017;10:1–11. doi: 10.1186/s13045-017-0489-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
138. Liu Y., Yang Y., Kang X., Lin B., Yu Q., Song B., Gao G., Chen Y., Sun X., Li X., et al. One-Step Biallelic and Scarless Correction of a β-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection. Mol. Ther.-Nucleic Acids. 2017;6:57–67. doi: 10.1016/j.omtn.2016.11.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
139. Cai L., Bai H., Mahairaki V., Gao Y., He C., Wen Y., Jin Y.-C., Wang Y., Pan R.L., Qasba A., et al. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Stem Cells Transl. Med. 2017;7:87–97. doi: 10.1002/sctm.17-0066. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
140. Liang P., Ding C., Sun H., Xie X., Xu Y., Zhang X., Sun Y., Xiong Y., Ma W., Liu Y., et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell. 2017;8:811–822. doi: 10.1007/s13238-017-0475-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
141. Antony J.S., Latifi N., Haque A.K.M.A., Lamsfus-Calle A., Daniel-Moreno A., Graeter S., Baskaran P., Weinmann P., Mezger M., Handgretinger R., et al. Gene correction of HBB mutations in CD34+ hematopoietic stem cells using Cas9 mRNA and ssODN donors. Mol. Cell. Pediatr. 2018;5:1–7. doi: 10.1186/s40348-018-0086-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
142. Vakulskas C.A., Dever D.P., Rettig G.R., Turk R., Jacobi A.M., Collingwood M.A., Bode N.M., McNeill M.S., Yan S., Camarena J., et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 2018;24:1216–1224. doi: 10.1038/s41591-018-0137-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
143. Canver M.C., Smith E.C., Sher F., Pinello L., Sanjana N., Shalem O., Chen D.D., Schupp P.G., Vinjamur D., Garcia S., et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nat. Cell Biol. 2015;527:192–197. doi: 10.1038/nature15521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
144. Traxler E.A., Yao Y., Wang Y.-D., Woodard K.J., Kurita R., Nakamura Y., Hughes J.R., Hardison R.C., Blobel G.A., Li C., et al. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat. Med. 2016;22:987–990. doi: 10.1038/nm.4170. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
145. Ye L., Wang J., Tan Y., Beyer A.I., Xie F., Muench M.O., Kan Y.W. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proc. Natl. Acad. Sci. USA. 2016;113:10661–10665. doi: 10.1073/pnas.1612075113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
146. Bjurström C.F., Mojadidi M., Phillips J., Kuo C., Lai S., Lill G.R., Cooper A., Kaufman M., Urbinati F., Wang X., et al. Reactivating Fetal Hemoglobin Expression in Human Adult Erythroblasts Through BCL11A Knockdown Using Targeted Endonucleases. Mol. Ther.-Nucleic Acids. 2016;5:e351. doi: 10.1038/mtna.2016.52. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
147. Chang K.-H., Smith S.E., Sullivan T., Chen K., Zhou Q., West J.A., Liu M., Liu Y., Vieira B.F., Sun C., et al. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34 + Hematopoietic Stem and Progenitor Cells. Mol. Ther.-Methods Clin. Dev. 2017;4:137–148. doi: 10.1016/j.omtm.2016.12.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
148. Mettananda S., Fisher C.A., Hay D., Badat M., Quek L., Clark K., Hublitz P., Downes D., Kerry J., Gosden M., et al. Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia. Nat. Commun. 2017;8:1–11. doi: 10.1038/s41467-017-00479-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
149. Antoniani C., Meneghini V., Lattanzi A., Felix T., Romano O., Magrin E., Weber L., Pavani G., El Hoss S., Kurita R., et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood. 2018;131:1960–1973. doi: 10.1182/blood-2017-10-811505. [PubMed] [CrossRef] [Google Scholar]
150. Li C., Psatha N., Sova P., Gil S., Wang H., Kim J., Kulkarni C., Valensisi C., David Hawkins R., Stamatoyannopoulos G., et al. Reactivation of g-globin in adult b-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing. Blood. 2018;131:2915–2928. doi: 10.1182/blood-2018-03-838540. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
151. Psatha N., Reik A., Phelps S., Zhou Y., Dalas D., Yannaki E., Levasseur D.N., Urnov F.D., Holmes M.C., Papayannopoulou T. Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with β-Thalassemia Major. Mol. Ther.-Methods Clin. Dev. 2018;10:313–326. doi: 10.1016/j.omtm.2018.08.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
152. Patsali P., Turchiano G., Papasavva P., Romito M., Loucari C.C., Stephanou C., Christou S., Sitarou M., Mussolino C., Cornu T.I., et al. Correction of IVS I-110(G>A) β-thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematology. 2019;104:e497–e501. doi: 10.3324/haematol.2018.215178. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
153. Wu Y., Zeng J., Roscoe B.P., Liu P., Yao Q., Lazzarotto C.R., Clement M.K., Cole M.A., Luk K., Baricordi C., et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 2019;25:776–783. doi: 10.1038/s41591-019-0401-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
154. Lux C.T., Pattabhi S., Berger M., Nourigat C., Flowers D.A., Negre O., Humbert O., Yang J.G., Lee C., Jacoby K., et al. TALEN-Mediated Gene Editing of HBG in Human Hematopoietic Stem Cells Leads to Therapeutic Fetal Hemoglobin Induction. Mol. Ther.-Methods Clin. Dev. 2019;12:175–183. doi: 10.1016/j.omtm.2018.12.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
155. Urnov F., Miller J.C., Lee Y.-L., Beausejour C.M., Rock J.M., Augustus S., Jamieson A.C., Porteus M.H., Gregory P.D., Holmes M.C. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nat. Cell Biol. 2005;435:646–651. doi: 10.1038/nature03556. [PubMed] [CrossRef] [Google Scholar]
156. Lombardo A.L., Genovese P., Beausejour C.M., Colleoni S., Lee Y.-L., Kim K.A., Ando D., Urnov F.D., Galli C., Gregory P.D., et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 2007;25:1298–1306. doi: 10.1038/nbt1353. [PubMed] [CrossRef] [Google Scholar]
157. Chang C.-W., Lai Y.-S., Westin E., Khodadadi-Jamayran A., Pawlik K.M., Lamb L.S., Goldman F.D., Townes T.M. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting. Cell Rep. 2015;12:1668–1677. doi: 10.1016/j.celrep.2015.08.013. [PubMed] [CrossRef] [Google Scholar]
158. Roth T.L., Puig-Saus C., Yu R., Shifrut E., Carnevalse J., Li P.J., Hiatt J., Saco J., Krystofinski P., Li H., et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018;559:405–409. doi: 10.1038/s41586-018-0326-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
159. Pavel-Dinu M., Wiebking V., Dejene B.T., Srifa W., Mantri S., Nicolas C.E., Lee C., Bao G., Kildebeck E.J., Punjya N., et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-13620-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
160. Laskowski T.J., Van Caeneghem Y., Pourebrahim R., Ma C., Ni Z., Garate Z., Crane A.M., Li X.S., Liao W., Gonzalez-Garay M., et al. Gene Correction of iPSCs from a Wiskott-Aldrich Syndrome Patient Normalizes the Lymphoid Developmental and Functional Defects. Stem Cell Rep. 2016;7:139–148. doi: 10.1016/j.stemcr.2016.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
161. Rai R., Romito M., Rivers E., Turchiano G., Blattner G., Vetharoy W., Ladon D., Andrieux G., Zhang F., Zinicola M., et al. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott-Aldrich Syndrome. Nat. Commun. 2020;11:1–15. doi: 10.1038/s41467-020-17626-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
162. Pavani G., Laurent M., Fabiano A., Cantelli E., Sakkal A., Corre G., Lenting P.J., Concordet J.P., Toueille M., Miccio A., et al. Ex vivo editing of human hematopoietic stem cells for erythroid expression of therapeutic proteins. Nat. Commun. 2020;11:1–13. [PMC free article] [PubMed] [Google Scholar]
163. Dreyer A.-K., Hoffmann D., Lachmann N., Ackermann M., Steinemann D., Timm B., Siler U., Reichenbach J., Grez M., Moritz T., et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials. 2015;69:191–200. doi: 10.1016/j.biomaterials.2015.07.057. [PubMed] [CrossRef] [Google Scholar]
164. Flynn R., Grundmann A., Renz P., Hänseler W., James W., Cowley S.A., Moore M.D. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp. Hematol. 2015;43:838–848.e3. doi: 10.1016/j.exphem.2015.06.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
165. Merling R.K., Sweeney C.L., Chu J., Bodansky A., Choi U., Priel D.L., Kuhns D.B., Wang H., Vasilevsky S., De Ravin S.S., et al. An AAVS1-Targeted Minigene Platform for Correction of iPSCs From All Five Types of Chronic Granulomatous Disease. Mol. Ther. 2015;23:147–157. doi: 10.1038/mt.2014.195. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
166. Sweeney C.L., Zou J., Choi U., Merling R.K., Liu A., Bodansky A., Burkett S., Kim J.-W., De Ravin S.S., Malech H.L. Targeted Repair of CYBB in X-CGD iPSCs Requires Retention of Intronic Sequences for Expression and Functional Correction. Mol. Ther. 2017;25:321–330. doi: 10.1016/j.ymthe.2016.11.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
167. De Ravin S.S., Li L., Wu X., Choi U., Allen C., Koontz S., Lee J., Theobald-Whiting N., Chu J., Garofalo M., et al. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci. Transl. Med. 2017;9:eaah3480. doi: 10.1126/scitranslmed.aah3480. [PubMed] [CrossRef] [Google Scholar]
168. Merling R.K., Kuhns U.B., Sweeney C.L., Wu X., Burkett S., Chu J., Lee J., Koontz S., Di Pasquale G., Afione S.A., et al. Gene-edited pseudogene resurrection corrects p47phox-deficient chronic granulomatous disease. Blood Adv. 2017;1:270–278. doi: 10.1182/bloodadvances.2016001214. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
169. Klatt D., Cheng E., Hoffmann D., Santilli G., Thrasher A.J., Brendel C., Schambach A. Differential Transgene Silencing of Myeloid-Specific Promoters in the AAVS1 Safe Harbor Locus of Induced Pluripotent Stem Cell-Derived Myeloid Cells. Hum. Gene Ther. 2020;31:199–210. doi: 10.1089/hum.2019.194. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
170. Goodwin M., Lee E., Lakshmanan U., Shipp S., Froessl L., Barzaghi F., Passerini L., Narula M., Sheikali A., Lee C., et al. CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells. Sci. Adv. 2020;6:eaaz0571. doi: 10.1126/sciadv.aaz0571. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
171. Hubbard N., Hagin D., Sommer K., Song Y., Khan I., Clough C., Ochs H.D., Rawlings D.J., Scharenberg A.M., Torgerson T.R. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood. 2016;127:2513–2522. doi: 10.1182/blood-2015-11-683235. [PubMed] [CrossRef] [Google Scholar]
172. Rio P., Baños R., Lombardo A.L., Quintana-Bustamante O., Alvarez L., Garate Z., Genovese P., Almarza E., Valeri A., Díez B., et al. Targeted gene therapy and cell reprogramming in F anconi anemia. EMBO Mol. Med. 2014;6:835–848. doi: 10.15252/emmm.201303374. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
173. Kramarzova K.S., Osborn M.J., Webber B.R., DeFeo A.P., McElroy A.N., Kim C.J., Tolar J. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. Int. J. Mol. Sci. 2017;18:1269. doi: 10.3390/ijms18061269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
174. Diez B., Genovese P., Roman-Rodriguez F.J., Alvarez L., Schiroli G., Ugalde L., Rodriguez-Perales S., Sevilla J., De Heredia C.D., Holmes M.C., et al. Therapeutic gene editing in CD 34 + hematopoietic progenitors from Fanconi anemia patients. EMBO Mol. Med. 2017;9:1574–1588. doi: 10.15252/emmm.201707540. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
175. Román-Rodríguez F.J., Ugalde L., Álvarez L., Díez B., Ramírez M.J., Risueño C., Cortón M., Bogliolo M., Bernal S., March F., et al. NHEJ-Mediated Repair of CRISPR-Cas9-Induced DNA Breaks Efficiently Corrects Mutations in HSPCs from Patients with Fanconi Anemia. Cell Stem Cell. 2019;25:607–621.e7. doi: 10.1016/j.stem.2019.08.016. [PubMed] [CrossRef] [Google Scholar]
176. Park C.-Y., Kim J., Kweon J., Son J.S., Lee J.S., Yoo J.-E., Cho S.-R., Kim D.-W. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc. Natl. Acad. Sci. USA. 2014;111:9253–9258. doi: 10.1073/pnas.1323941111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
177. Park C.Y., Kim D.H., Son J.S., Sung J.J., Lee J., Bae S., Kim J.H., Kim D.W., Kim J.S. Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9. Cell Stem Cell. 2015;17:213–220. doi: 10.1016/j.stem.2015.07.001. [PubMed] [CrossRef] [Google Scholar]
178. Wu Y., Hu Z., Li Z., Pang J., Feng M., Hu X., Wang X., Lin-Peng S., Liu B., Chen F., et al. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Sci. Rep. 2016;6:srep18865. doi: 10.1038/srep18865. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
179. Park C.-Y., Sung J.J., Cho S.-R., Kim J., Kim D.-W. Universal Correction of Blood Coagulation Factor VIII in Patient-Derived Induced Pluripotent Stem Cells Using CRISPR/Cas9. Stem Cell Rep. 2019;12:1242–1249. doi: 10.1016/j.stemcr.2019.04.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
180. Huai C., Jia C., Sun R., Xu P., Min T., Wang Q., Zheng C., Chen H., Lu D. CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Qual. Life Res. 2017;136:875–883. doi: 10.1007/s00439-017-1801-z. [PubMed] [CrossRef] [Google Scholar]
181. Cleyrat C., Girard R., Choi E.H., Jeziorski E., Lavabre-Bertrand T., Hermouet S., Carillo S., Wilson B.S. Gene editing rescue of a novel MPL mutant associated with congenital amegakaryocytic thrombocytopenia. Blood Adv. 2017;1:1815–1826. doi: 10.1182/bloodadvances.2016002915. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
182. Schwarze L.I., Sonntag T., Wild S., Schmitz S., Uhde A., Fehse B. Automated production of CCR5-negative CD4+-T cells in a GMP-compatible, clinical scale for treatment of HIV-positive patients. Gene Ther. 2021:1–16. doi: 10.1038/s41434-021-00259-5. [PubMed] [CrossRef] [Google Scholar]
183. Xu L., Yang H., Gao Y., Chen Z., Xie L., Liu Y., Liu Y., Wang X., Li H., Lai W., et al. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Mol. Ther. 2017;25:1782–1789. doi: 10.1016/j.ymthe.2017.04.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
184. Mlambo T., Nitsch S., Hildenbeutel M., Romito M., Müller M., Bossen C., Diederichs S., Cornu T.I., Cathomen T., Mussolino C. Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Res. 2018;46:4456–4468. doi: 10.1093/nar/gky171. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
185. Chandrakasan S., Malik P. Gene therapy for hemoglobinopathies: The state of the field and the future. Hematol. Oncol. Clin. N. Am. 2014;28:199–216. doi: 10.1016/j.hoc.2013.12.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
186. Kountouris P., Lederer C.W., Fanis P., Feleki X., Old J., Kleanthous M. IthaGenes: An Interactive Database for Haemoglobin Variations and Epidemiology. PLoS ONE. 2014;9:e103020. doi: 10.1371/journal.pone.0103020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
187. Esrick E.B., Lehmann L.E., Biffi A., Achebe M., Brendel C., Ciuculescu M.F., Daley H., MacKinnon B., Morris E., Federico A., et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N. Engl. J. Med. 2021;384:205–215. doi: 10.1056/NEJMoa2029392. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
188. Bluebird to Withdraw Gene Therapy from Germany after Dispute over Price. 20 April 2021. [(accessed on 18 May 2021)]; Available online: https://www.biopharmadive.com/news/bluebird-withdraw-zynteglo-germany-price/598689/
189. Patsali P., Mussolino C., Ladas P., Floga A., Kolnagou A., Christou S., Sitarou M., Antoniou M.N., Cathomen T., Lederer C.W., et al. The Scope for Thalassemia Gene Therapy by Disruption of Aberrant Regulatory Elements. J. Clin. Med. 2019;8:1959. doi: 10.3390/jcm8111959. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
190. Xu S., Luk K., Yao Q., Shen A.H., Zeng J., Wu Y., Luo H.Y., Brendel C., Pinello L., Chui D.H.K., et al. Editing aberrant splice sites efficiently restores b-globin expression in b-thalassemia. Blood. 2019;133:2255–2262. doi: 10.1182/blood-2019-01-895094. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
191. Zeng J., Wu Y., Ren C., Bonanno J., Shen A.H., Shea D., Gehrke J.M., Clement K., Luk K., Yao Q., et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 2020;26:535–541. doi: 10.1038/s41591-020-0790-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
192. Gehrke J.M., Cervantes O., Clement M.K., Wu Y., Zeng J., Bauer D.E., Pinello L., Joung J.K. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 2018;36:977–982. doi: 10.1038/nbt.4199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
193. Bauer D.E., Kamran S.C., Orkin S.H. Reawakening fetal hemoglobin: Prospects for new therapies for the β-globin disorders. Blood. 2012;120:2945–2953. doi: 10.1182/blood-2012-06-292078. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
194. Shariati L., Khanahmad H., Salehi M., Hejazi Z., Rahimmanesh I., Tabatabaiefar M.A., Modarressi M.H. Genetic disruption of theKLF1gene to overexpress the γ-globin gene using the CRISPR/Cas9system. J. Gene Med. 2016;18:294–301. doi: 10.1002/jgm.2928. [PubMed] [CrossRef] [Google Scholar]
195. Wilber A., Tschulena U., Hargrove P.W., Kim Y.-S., Persons D.A., Barbas C.F., Nienhuis A.W. A zinc-finger transcriptional activator designed to interact with the γ-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood. 2010;115:3033–3041. doi: 10.1182/blood-2009-08-240556. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
196. Mettananda S., Yasara N., Fisher C.A., Taylor S., Gibbons R., Higgs D. Synergistic silencing of α-globin and induction of γ-globin by histone deacetylase inhibitor, vorinostat as a potential therapy for β-thalassaemia. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-48204-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
197. Yen J.S., Newby G.A., Mayuranathan T., Porter S.N., Yao Y., Woodard B.K.J., Mayberry B.K., Everette K., Zhang M.J., Henderson M.J.M., et al. Base Editing Eliminates the Sickle Cell Mutation and Pathology in Hematopoietic Stem Cells Derived Erythroid Cells. Blood. 2020;136:13–14. doi: 10.1182/blood-2020-139016. [CrossRef] [Google Scholar]
198. Notarangelo L.D. Primary immunodeficiencies. J. Allergy Clin. Immunol. 2010;125:S182–S194. doi: 10.1016/j.jaci.2009.07.053. [PubMed] [CrossRef] [Google Scholar]
199. Pike-Overzet K., Van Der Burg M., Wagemaker G., Van Dongen J.J., Staal F.J. New Insights and Unresolved Issues Regarding Insertional Mutagenesis in X-linked SCID Gene Therapy. Mol. Ther. 2007;15:1910–1916. doi: 10.1038/sj.mt.6300297. [PubMed] [CrossRef] [Google Scholar]
200. Charrier S., Peyrou C.L., Poletti V., Rothe M., Cédrone G., Gjata B., Mavilio F., Fischer A., Schambach A., De Villartay J.-P., et al. Biosesafety Studies of a Clinically Applicable Lentiviral Vector for the Gene Therapy of Artemis-SCID. Mol. Ther.-Methods Clin. Dev. 2019;15:232–245. doi: 10.1016/j.omtm.2019.08.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
201. Garcia-Perez L., van Eggermond M., van Roon L., Vloemans S.A., Cordes M., Schambach A., Rothe M., Berghuis D., Lagresle-Peyrou C., Cavazzana M., et al. Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID. Mol. Ther.-Methods Clin. Dev. 2020;17:666–682. doi: 10.1016/j.omtm.2020.03.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
202. Fox T.A., Booth C. Gene therapy for primary immunodeficiencies. Br. J. Haematol. 2020 doi: 10.1111/bjh.17269. [PubMed] [CrossRef] [Google Scholar]
203. Allenspach E., Rawlings D.J., Scharenberg A.M. X-Linked Severe Combined Immunodeficiency. University of Washington; Seattle, WA, USA: 1993. [Google Scholar]
204. Ferguson-Smith M.A. Brenner’s Encyclopedia of Genetics. 2nd ed. Elsevier Inc., imprint Academic Press; London, UK: 2013. Wiskott-Aldrich Syndrome; p. 346. [Google Scholar]
205. Wrona D., Pastukhov O., Pritchard R.S., Raimondi F., Tchinda J., Jinek M., Siler U., Reichenbach J. CRISPR-Directed Therapeutic Correction at the NCF1 Locus Is Challenged by Frequent Incidence of Chromosomal Deletions. Mol. Ther.-Methods Clin. Dev. 2020;17:936–943. doi: 10.1016/j.omtm.2020.04.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
206. Tan Q.K.-G., Louie R.J., Sleasman J.W. IPEX Syndrome. [(accessed on 14 June 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK1118/
207. Bacchetta R., Barzaghi F., Roncarolo M.-G. From IPEX syndrome to FOXP3 mutation: A lesson on immune dysregulation. Ann. N. Y. Acad. Sci. 2018;1417:5–22. doi: 10.1111/nyas.13011. [PubMed] [CrossRef] [Google Scholar]
208. Passerini L., Mel E.R., Sartirana C., Fousteri G., Bondanza A., Naldini L., Roncarolo M.G., Bacchetta R. CD4+ T Cells from IPEX Patients Convert into Functional and Stable Regulatory T Cells by FOXP3 Gene Transfer. Sci. Transl. Med. 2013;5:215ra174. doi: 10.1126/scitranslmed.3007320. [PubMed] [CrossRef] [Google Scholar]
209. Sato Y., Passerini L., Piening B.D., Uyeda M.J., Goodwin M., Gregori S., Snyder M.P., Bertaina A., Roncarolo M., Bacchetta R. Human-engineered Treg-like cells suppress FOXP3-deficient T cells but preserve adaptive immune responses in vivo. Clin. Transl. Immunol. 2020;9:1214. doi: 10.1002/cti2.1214. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
210. Davies E.G., Thrasher A.J. Update on the hyper immunoglobulin M syndromes. Br. J. Haematol. 2010;149:167–180. doi: 10.1111/j.1365-2141.2010.08077.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
211. Kawabe T., Matsushima M., Hashimoto N., Imaizumi K., Hasegawa Y. CD40/CD40 Ligand Interactions in Immune Responses and Pulmonary Immunity. Nagoya J. Med. Sci. 2011;73:69–78. [PMC free article] [PubMed] [Google Scholar]
212. Sacco M.G., Ungari M., Catò E.M., Villa A., Strina D., Notarangelo L.D., Jonkers J., Zecca L., Facchetti F., Vezzoni P. Lymphoid abnormalities in CD40 ligand transgenic mice suggest the need for tight regulation in gene therapy approaches to hyper immunoglobulin M (IgM) syndrome. Cancer Gene Ther. 2000;7:1299–1306. doi: 10.1038/sj.cgt.7700232. [PubMed] [CrossRef] [Google Scholar]
213. Drexler B., Tichelli A., Passweg J.R. Bone marrow failure. Ther. Umschau. 2019;76:523–529. doi: 10.1024/0040-5930/a001123. [PubMed] [CrossRef] [Google Scholar]
214. Cypris O., Eipel M., Franzen J., Rösseler C., Tharmapalan V., Kuo C.-C., Vieri M., Nikolić M., Kirschner M., Brümmendorf T.H., et al. PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. Clin. Epigenetics. 2020;12:1–14. doi: 10.1186/s13148-020-00914-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
215. Río P., Navarro S., Bueren J.A. Advances in Gene Therapy for Fanconi Anemia. Hum. Gene Ther. 2018;29:1114–1123. doi: 10.1089/hum.2018.124. [PubMed] [CrossRef] [Google Scholar]
216. Osborn M.J., Gabriel R., Webber B.R., DeFeo A.P., McElroy A.N., Jarjour J., Starker C., Wagner J.E., Joung J.K., Voytas D., et al. Fanconi Anemia Gene Editing by the CRISPR/Cas9 System. Hum. Gene Ther. 2015;26:114–126. doi: 10.1089/hum.2014.111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
217. Richardson C.D., Kazane K.R., Feng S.J., Zelin E., Bray N.L., Schäfer A.J., Floor S.N., Corn J.E. CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat. Genet. 2018;50:1132–1139. doi: 10.1038/s41588-018-0174-0. [PubMed] [CrossRef] [Google Scholar]
218. Wienert B., Nguyen D.N., Guenther A., Feng S.J., Locke M.N., Wyman S.K., Shin J., Kazane K.R., Gregory G.L., Carter M., et al. Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. Nat. Commun. 2020;11:1–15. doi: 10.1038/s41467-020-15845-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
219. Dargaud Y., Meunier S., Negrier C. Haemophilia and thrombophilia: An unexpected association! Haemophilia. 2004;10:319–326. doi: 10.1111/j.1365-2516.2004.00906.x. [PubMed] [CrossRef] [Google Scholar]
220. Senst B., Tadi P., Basit H., Arif J. Hypercoagulability. [(accessed on 14 June 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK538251/
221. Nance D. Brenner’s Encyclopedia of Genetics. 2nd ed. Elsevier Inc., imprint Academic Press; London, UK: 2013. Hemophilia; pp. 426–429. [Google Scholar]
222. Li H., Haurigot V., Doyon Y., Li T., Wong S.Y., Bhagwat A.S., Malani N., Anguela X.M., Sharma R., Ivanciu L., et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nat. Cell Biol. 2011;475:217–221. doi: 10.1038/nature10177. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
223. Chen H., Shi M., Gilam A., Zheng Q., Zhang Y., Afrikanova I., Li J., Gluzman Z., Jiang R., Kong L.-J., et al. Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Sci. Rep. 2019;9:16838-15. doi: 10.1038/s41598-019-53198-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
224. Ohmori T., Nagao Y., Mizukami H., Sakata A., Muramatsu S.-I., Ozawa K., Tominaga S.-I., Hanazono Y., Nishimura S., Nureki O., et al. CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice. Sci. Rep. 2017;7:1–11. doi: 10.1038/s41598-017-04625-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
225. Sharma R., Anguela X.M., Doyon Y., Wechsler T., DeKelver R.C., Sproul S., Paschon D.E., Miller J.C., Davidson R.J., Shivak D.A., et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood. 2015;126:1777–1784. doi: 10.1182/blood-2014-12-615492. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
226. Reiss U.M., Zhang L., Ohmori T. Hemophilia gene therapy—New country initiatives. Haemophilia. 2021;27:132–141. doi: 10.1111/hae.14080. [PubMed] [CrossRef] [Google Scholar]
227. Chang L.-J. Lentiviral FVIII Gene Therapy. [(accessed on 14 June 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03217032.
228. Chang L.-J. Lentiviral FIX Gene Therapy. [(accessed on 14 June 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03961243.
229. Parameswaran Hari M.C.W. Gene Therapy Trial for Platelet Derived Factor VIII Production in Hemophilia A. [(accessed on 14 June 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03818763.
230. Van Der Ploeg A.T., Kruijshaar M.E., Toscano A., Laforêt P., Angelini C., Lachmann R.H., Pascual S.I.P., Roberts M., Rösler K., Stulnig T., et al. European consensus for starting and stopping enzyme replacement therapy in adult patients with Pompe disease: A 10-year experience. Eur. J. Neurol. 2017;24:768-e31. doi: 10.1111/ene.13285. [PubMed] [CrossRef] [Google Scholar]
231. Sirrs S., Hollak C.E.M., Merkel M., Sechi A., Glamuzina E., Janssen M.C., Lachmann R., Langendonk J.G., Scarpelli M., the SFEIM-A Study Group et al. JIMD Reports. Volume 27. Springer; Berlin/Heidelberg, Germany: 2015. The Frequencies of Different Inborn Errors of Metabolism in Adult Metabolic Centres: Report from the SSIEM Adult Metabolic Physicians Group; pp. 85–91. [PMC free article] [PubMed] [Google Scholar]
232. Malatack J.J., Consolini D.M., Bayever E. The status of hematopoietic stem cell transplantation in lysosomal storage disease. Pediatr. Neurol. 2003;29:391–403. doi: 10.1016/j.pediatrneurol.2003.09.003. [PubMed] [CrossRef] [Google Scholar]
233. Andreou T., Rippaus N., Wronski K., Williams J., Taggart D., Cherqui S., Sunderland A., Kartika Y.D., Egnuni T., Brownlie R.J., et al. Hematopoietic Stem Cell Gene Therapy for Brain Metastases Using Myeloid Cell–Specific Gene Promoters. J. Natl. Cancer Inst. 2019;112:617–627. doi: 10.1093/jnci/djz181. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
234. Rocca C.J., Goodman S.M., Dulin J.N., HaQuang J.H., Gertsman I., Blondelle J., Smith J.L.M., Heyser C.J., Cherqui S. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci. Transl. Med. 2017;9:eaaj2347. doi: 10.1126/scitranslmed.aaj2347. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
235. Rocca C.J., Rainaldi J.N., Sharma J., Shi Y., HaQuang J.H., Luebeck J., Mali P., Cherqui S. CRISPR-Cas9 Gene Editing of Hematopoietic Stem Cells from Patients with Friedreich’s Ataxia. Mol. Ther.-Methods Clin. Dev. 2020;17:1026–1036. doi: 10.1016/j.omtm.2020.04.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
236. Binnie A., Fernandes E., Almeida-Lousada H., De Mello R.A., Castelo-Branco P. CRISPR-based strategies in infectious disease diagnosis and therapy. Infection. 2021:1–9. doi: 10.1007/s15010-020-01554-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
237. Azangou-Khyavy M., Ghasemi M., Khanali J., Boroomand-Saboor M., Jamalkhah M., Soleimani M., Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front. Immunol. 2020;11:2062. doi: 10.3389/fimmu.2020.02062. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
238. Ghorbani A., Hadifar S., Salari R., Izadpanah K., Burmistrz M., Afsharifar A., Eskandari M.H., Niazi A., Denes C.E., Neely G.G. A short overview of CRISPR-Cas technology and its application in viral disease control. Transgenic Res. 2021;30:221–238. doi: 10.1007/s11248-021-00247-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
239. Morgan M.A., Büning H., Sauer M., Schambach A. Use of Cell and Genome Modification Technologies to Generate Improved “Off-the-Shelf” CAR T and CAR NK Cells. Front. Immunol. 2020;11:1965. doi: 10.3389/fimmu.2020.01965. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
240. Saydaminova K., Ye X., Wang H., Richter M., Ho M., Chen H., Xu N., Kim J.-S., Papapetrou E., Holmes M.C., et al. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. Mol. Ther. Methods Clin. Dev. 2015;1:14057. doi: 10.1038/mtm.2014.57. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
241. Smith A.J.P., Deloukas P., Munroe P.B. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits. Physiol. Genom. 2018;50:510–522. doi: 10.1152/physiolgenomics.00028.2018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
242. Chan K., Tong A.H.Y., Brown K.R., Mero P., Moffat J. Pooled CRISPR-Based Genetic Screens in Mammalian Cells. J. Vis. Exp. 2019:e59780. doi: 10.3791/59780. [PubMed] [CrossRef] [Google Scholar]
243. Gonçalves E., Segura-Cabrera A., Pacini C., Picco G., Behan F.M., Jaaks P., Coker E.A., Meer D., Barthorpe A., Lightfoot H., et al. Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens. Mol. Syst. Biol. 2020;16:e9405. doi: 10.15252/msb.20199405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
244. Makhov P., Sohn J.A., Serebriiskii I.G., Fazliyeva R., Khazak V., Boumber Y., Uzzo R.G., Kolenko V.M. CRISPR/Cas9 genome-wide loss-of-function screening identifies druggable cellular factors involved in sunitinib resistance in renal cell carcinoma. Br. J. Cancer. 2020;123:1749–1756. doi: 10.1038/s41416-020-01087-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
245. Zhan T., Rindtorff N., Betge J., Ebert M.P., Boutros M. CRISPR/Cas9 for cancer research and therapy. Semin. Cancer Biol. 2019;55:106–119. doi: 10.1016/j.semcancer.2018.04.001. [PubMed] [CrossRef] [Google Scholar]
246. Aleshin A., Greenberg P.L. Molecular pathophysiology of the myelodysplastic syndromes: Insights for targeted therapy. Blood Adv. 2018;2:2787–2797. doi: 10.1182/bloodadvances.2018015834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
247. Morgan R.A., Gray D., Lomova A., Kohn D.B. Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell. 2017;21:574–590. doi: 10.1016/j.stem.2017.10.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
248. Tajer P., Pike-Overzet K., Arias S., Havenga M., Staal F.J. Ex Vivo Expansion of Hematopoietic Stem Cells for Therapeutic Purposes: Lessons from Development and the Niche. Cells. 2019;8:169. doi: 10.3390/cells8020169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
249. Al-Saif A.M. Gene therapy of hematological disorders: Current challenges. Gene Ther. 2019;26:296–307. doi: 10.1038/s41434-019-0093-4. [PubMed] [CrossRef] [Google Scholar]
250. Park S.-J., Jeong T.Y., Shin S.K., Yoon D.E., Lim S.-Y., Kim S.P., Choi J., Lee H., Hong J.-I., Ahn J., et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol. 2021;22:1–11. doi: 10.1186/s13059-021-02389-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
251. Song J., Yang D., Xu J., Zhu T., Chen Y.E., Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 2016;7:1–7. doi: 10.1038/ncomms10548. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
252. Pai S.-Y., Thrasher A.J. Gene therapy for X-linked severe combined immunodeficiency: Historical outcomes and current status. J. Allergy Clin. Immunol. 2020;146:258–261. doi: 10.1016/j.jaci.2020.05.055. [PubMed] [CrossRef] [Google Scholar]
253. Kumaki S., Sasahara Y., Kamachi Y., Muramatsu H., Morio T., Goi K., Sugita K., Urabe T., Takada H., Kojima S., et al. B-cell function after unrelated umbilical cord blood transplantation using a minimal-intensity conditioning regimen in patients with X-SCID. Int. J. Hematol. 2013;98:355–360. doi: 10.1007/s12185-013-1408-7. [PubMed] [CrossRef] [Google Scholar]
254. Nishimura A., Aoki Y., Ishiwata Y., Ichimura T., Ueyama J., Kawahara Y., Tomoda T., Inoue M., Matsumoto K., Inoue K., et al. Hematopoietic Cell Transplantation with Reduced Intensity Conditioning Using Fludarabine/Busulfan or Fludarabine/Melphalan for Primary Immunodeficiency Diseases. J. Clin. Immunol. 2021:1–14. doi: 10.1007/s10875-021-00966-z. [PubMed] [CrossRef] [Google Scholar]
255. Ngwube A., Shah N., Godder K., Jacobsohn D., Hulbert M.L., Shenoy S. Abatacept is effective as GVHD prophylaxis in unrelated donor stem cell transplantation for children with severe sickle cell disease. Blood Adv. 2020;4:3894–3899. [PMC free article] [PubMed] [Google Scholar]
256. Khandelwal P., Yeh R.F., Yu L., Lane A., Dandoy C.E., El-Bietar J., Davies S.M., Grimley M.S. Graft-versus-host Disease Prophylaxis with Abatacept Reduces Severe Acute Graft-versus-host Disease in Allogeneic Hematopoietic Stem Cell Transplant for Beta-thalassemia Major with Busulfan, Fludarabine, and Thiotepa. Transplantation. 2021;105:891–896. doi: 10.1097/TP.0000000000003327. [PubMed] [CrossRef] [Google Scholar]
257. Abadir E., Silveira P.A., Gasiorowski R.E., Ramesh M., Romano A., Mekkawy A.H., Lo T.-H., Kabani K., Sutherland S., Pietersz G.A., et al. Targeting CD300f to enhance hematopoietic stem cell transplantation in acute myeloid leukemia. Blood Adv. 2020;4:1206–1216. doi: 10.1182/bloodadvances.2019001289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
258. Russkamp N.F., Myburgh R., Kiefer J.D., Neri D., Manz M.G. Anti-CD117 immunotherapy to eliminate hematopoietic and leukemia stem cells. Exp. Hematol. 2021;95:31–45. doi: 10.1016/j.exphem.2021.01.003. [PubMed] [CrossRef] [Google Scholar]
259. Gao C., Schroeder J.A., Xue F., Jing W., Cai Y., Scheck A., Subramaniam S., Rao S., Weiler H., Czechowicz A., et al. Nongenotoxic antibody-drug conjugate conditioning enables safe and effective platelet gene therapy of hemophilia A mice. Blood Adv. 2019;3:2700–2711. doi: 10.1182/bloodadvances.2019000516. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
260. Chaudhury S., Ayas M., Rosen C., Ma M., Viqaruddin M., Parikh S., Kharbanda S., Chiang K., Haight A., Bhatia M., et al. A Multicenter Retrospective Analysis Stressing the Importance of Long-Term Follow-Up after Hematopoietic Cell Transplantation for β-Thalassemia. Biol. Blood Marrow Transplant. 2017;23:1695–1700. doi: 10.1016/j.bbmt.2017.06.004. [PubMed] [CrossRef] [Google Scholar]
261. Hsieh M.M., Kang E.M., Fitzhugh C.D., Link M.B., Bolan C.D., Kurlander R., Childs R.W., Rodgers G.P., Powell J.D., Tisdale J.F. Allogeneic Hematopoietic Stem-Cell Transplantation for Sickle Cell Disease. N. Engl. J. Med. 2009;361:2309–2317. doi: 10.1056/NEJMoa0904971. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
262. Pierce G.F. Uncertainty in an era of transformative therapy for haemophilia: Addressing the unknowns. Haemophilia. 2021;27:103–113. doi: 10.1111/hae.14023. [PubMed] [CrossRef] [Google Scholar]
263. Scala S., Basso-Ricci L., Dionisio F., Pellin D., Giannelli S., Salerio F.A., Leonardelli L., Cicalese M.P., Ferrua F., Aiuti A., et al. Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nat. Med. 2018;24:1683–1690. doi: 10.1038/s41591-018-0195-3. [PubMed] [CrossRef] [Google Scholar]
264. Cornu T.I., Mussolino C., Cathomen T. Refining strategies to translate genome editing to the clinic. Nat. Med. 2017;23:415–423. doi: 10.1038/nm.4313. [PubMed] [CrossRef] [Google Scholar]
265. Cromer M.K., Vaidyanathan S., Ryan D.E., Curry B., Lucas A.B., Camarena J., Kaushik M., Hay S., Martin R.M., Steinfeld I., et al. Global Transcriptional Response to CRISPR/Cas9-AAV6-Based Genome Editing in CD34+ Hematopoietic Stem and Progenitor Cells. Mol. Ther. 2018;26:2431–2442. doi: 10.1016/j.ymthe.2018.06.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
266. Mohrin M., Bourke E., Alexander D., Warr M.R., Barry-Holson K., Le Beau M.M., Morrison C.G., Passegué E., Abbas T., Dutta A., et al. Hematopoietic Stem Cell Quiescence Promotes Error-Prone DNA Repair and Mutagenesis. Cell Stem Cell. 2010;7:174–185. doi: 10.1016/j.stem.2010.06.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
267. Anzalone A.V., Koblan L., Liu D.R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020;38:824–844. doi: 10.1038/s41587-020-0561-9. [PubMed] [CrossRef] [Google Scholar]
268. Uchida N., Nassehi T., Drysdale C.M., Gamer J., Yapundich M., Bonifacino A.C., Krouse A.E., Linde N., Hsieh M.M., Donahue R.E., et al. Busulfan Combined with Immunosuppression Allows Efficient Engraftment of Gene-Modified Cells in a Rhesus Macaque Model. Mol. Ther. 2019;27:1586–1596. doi: 10.1016/j.ymthe.2019.05.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
269. Chandran S., Tang Q., Sarwal M., Laszik Z.G., Putnam A.L., Lee K., Leung J., Nguyen V., Sigdel T., Tavares E.C., et al. Polyclonal Regulatory T Cell Therapy for Control of Inflammation in Kidney Transplants. Arab. Archaeol. Epigr. 2017;17:2945–2954. doi: 10.1111/ajt.14415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
270. Nagata S., Pastan I. Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics. Adv. Drug Deliv. Rev. 2009;61:977–985. doi: 10.1016/j.addr.2009.07.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
271. Cyranoski D., Ledford H. Genome-edited baby claim provokes international outcry. Nature. 2018;563:607–608. doi: 10.1038/d41586-018-07545-0. [PubMed] [CrossRef] [Google Scholar]
272. MarketsandMarkets Genome Editing Market—Global Forecast to 2025. [(accessed on 14 June 2021)]; Available online: https://www.marketsandmarkets.com/Market-Reports/genome-editing-engineering-market-231037000.html.
273. IMF World Economic Outlook, April 2021: Managing Divergent Recoveries. [(accessed on 19 May 2021)]; Available online: https://www.imf.org/en/Publications/WEO/Issues/2021/03/23/world-economic-outlook-april-2021.
- 【广东会GDH基因检测】非小细胞肺癌抗药后基因检测所带来的新方案...
- 【广东会GDH基因靶向药物基因检测】 BRAF V600E 突变的非小细胞肺癌腹膜癌患者对加曲美替尼的有希望的反应...
- 【广东会GDH基因靶向药物基因检测】与突变无关的 RNA 干扰工程替代品可挽救与 Tmc1 相关的听力损失...
- 【广东会GDH基因检测】基因病基因缺陷疾病的基因治疗...
- 【广东会GDH基因检测】达拉非尼疗法和BRAF基因型基因检测...
- 【广东会GDH基因检测】右侧单冠状缝早闭症基因筛查测试...
- 【广东会GDH基因检测】如何使用威诺利克(Venclexta)治疗白血病患者?...
- 【广东会GDH基因检测】食道癌高水平治疗使用的曲妥珠单抗(Herceptin)病理检测指标...
- 【广东会GDH基因检测】白血病降低痛苦用药使用维甲酸(Vesanoid)分子诊断结果...
- 【广东会GDH基因检测】乳腺癌曲妥珠单抗(Kadcyla)靶向药物基因检测...
- 【广东会GDH基因检测】得了胃癌如何采用尼沃鲁单抗(Opdivo)进行靶向治疗?...
- 【广东会GDH基因检测】头颈癌增加治疗效果时选用的帕姆单抗(Keytruda)基因检测依据...
- 【广东会GDH基因检测】使用帕姆单抗(Keytruda治疗子宫内膜癌之前要做什么基因检测?...
- 【广东会GDH基因检测】使用阿韦珠单抗(Bavencio)治疗内分泌和神经内分泌肿瘤,会减少病人痛苦吗?...
- 【广东会GDH基因检测】肺癌药物处方治疗曲美替尼(Mekinist)基因检测信息...
- 【广东会GDH基因检测】食道癌尼沃鲁单抗(Opdivo)正确医学基因检测...
- 【广东会GDH基因检测】肺癌如何使用特普替尼(Tepmetko)会产生靶向药效果...
- 【广东会GDH基因检测】胃肠道间质瘤舒尼替尼(Sutent)靶向治疗基因检测...
- 【广东会GDH基因检测】肝癌和胆管癌选择非替尼(Inrebic)基因检测指标...
- 【广东会GDH基因检测】乳腺癌正确治疗使用的玛格曲希单抗(Margenza)的前提条件...
- 【广东会GDH基因检测】肺癌什么时候选择甲磺酸奥希替尼(Tagrisso)达到正确医学水平?...
- 【广东会GDH基因检测】使用普拉替尼(Gavreto)治疗肺癌,肿瘤会不会减小?...
- 【广东会GDH基因检测】身体任何部位的实体瘤使用靶向药物治疗曲美替尼(Mekinist)所需NGS结果...
- 【广东会GDH基因检测】什么样的结直肠癌患者需要使用齐夫-阿飞单抗(Zaltrap)?...
- 【广东会GDH基因检测】使用沃利替尼(Zolinza)治疗淋巴瘤之前要做什么基因检测?...
- 【广东会GDH基因检测】淋巴瘤患者如何知道是否需要使用赞布鲁汀(Brukinsa)?...
- 【广东会GDH基因检测】膀胱癌降低痛苦用药使用沙西他胺戈维替坎(Trodelvy)分子诊断结果...
- 【广东会GDH基因检测】乳腺癌增加治疗效果时选用的沙西他胺戈维替坎(Trodelvy)基因检测依据...
- 【广东会GDH基因检测】淋巴瘤增加治疗效果时选用的塞林昔(Xpovio)基因测试要求依据...
- 【广东会GDH基因检测】如何采用基因检测增加塞林昔(Xpovio)对多发性骨髓瘤的治疗效果?...
- 来了,就说两句!
-
- 最新评论 进入详细评论页>>